countably many - definition. What is countably many
DICLIB.COM
أدوات لغة الذكاء الاصطناعي
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات بواسطة الذكاء الاصطناعي

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

SET WITH THE SAME CARDINALITY AS THE SET OF NATURAL NUMBERS
Countably infinite; Countable sets; Countable; Countably; Denumerable; Countably many; Countability; Denumerability; Countably infinite set; Denumerable Set; Denumerably Infinite; Countable space; Countable infinity; Denumerable set; Countable infinite; Countable Set; Infinitely countable; Infinitely countable set; Listable infinity
  • Bijective mapping from integer to even numbers
  • Enumeration for countable number of countable sets
  • The [[Cantor pairing function]] assigns one natural number to each pair of natural numbers

countably many         
Countable         
·adj Capable of being numbered.
denumerable         
[d?'nju:m(?)r?b(?)l]
¦ adjective Mathematics able to be counted by one-to-one correspondence with the set of integers.
Derivatives
denumerability noun
denumerably adverb
Origin
early 20th cent.: from late L. denumerare 'count out'.

ويكيبيديا

Countable set

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

In more technical terms, assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite.

The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers.